Deontay Wilder and Tyson Fury call for rematch after battling to draw in WBC heavyweight thriller

American boxer Wilder defends his world heavyweight title after judges divided on outcome, with one scoring it 115-111 for Wilder, another 114-112 for Fury and third 113-113

Deontay Wilder retained his WBC heavyweight crown in Los Angeles on Saturday after battling to a split decision draw against Britain's Tyson Fury in a pulsating 12-round battle.

Wilder had Fury on the canvas twice, including a spectacular final round knockdown, but was unable to get the knockout victory he had promised to deliver at the Staples Center.

The three judges were divided on the outcome, with one scoring it 115-111 for Wilder, another 114-112 for Fury and the third 113-113.

"I think with the two knockdowns I definitely won the fight," Wilder said afterwards. "We poured our hearts out tonight. We're both warriors, but with those two drops I think I won the fight."

Wilder, who remains unbeaten after 41 fights, immediately called for a rematch.

"I would love for it to be my next fight," Wilder said. "Let's give the fans what they want to see. It was a great fight and let's do it again."

Meanwhile, Fury insisted he had done enough to win.

"We're on away soil, I got knocked down twice, but I still believe I won that fight," Fury said. "That man is a fearsome puncher and I was able to avoid that. The world knows I won the fight."

Fury also said he hopes to arrange a rematch.

"One hundred percent we'll do the rematch," Fury said. "We are two great champions. Me and this man are the two best heavyweights on the planet."

Until a sensational final round knockdown from Wilder, Fury appeared to be heading towards what would have been a remarkable upset.

The 30-year-old "Gypsy King", who returned to boxing this year after missing more than two years through depression, drink and drug problems, had boxed cleverly to evade the heavy-hitting threat of Wilder for most of the fight.

The American champion struggled to connect cleanly with Fury throughout an absorbing contest, all too often sending huge arcing haymakers whistling past Fury's head.

Wilder landed just 71 of 430 punches thrown, or 17 per cent.

Fury by contrast cleverly picked his moments, finding Wilder with greater accuracy and causing a nasty swelling over the American's left eye.

Wilder, the more aggressive of the two fighters early on, quickly moved into an early lead.

But Fury gradually grew in confidence, regularly taunting Wilder by throwing his arms up in the air or behind his back.

Wilder responded with increasingly desperate flurries of big punches, very few of which found their mark.

As several former heavyweights had predicted beforehand, the longer the fight went on, the more Fury looked in control.

______________

Read more:

Deontay Wilder v Tyson Fury and the best fights still to come before final bell of 2018

Tyson Fury targets comeback on level of 'George Foreman and Muhammad Ali'

______________

Fury goes down

However in the ninth round, Wilder finally made his mark, dropping Fury with a short hook that had the fans on their feet.

Fury recovered well however and regained his composure to resume where he had left off. With a large contingent of British fans in the audience of 17,698 roaring him on, a victory suddenly seemed within reach.

Wilder however suddenly found a devastating combination just when he needed it in the 12th round.

A right hand sent Fury rocking backwards towards the deck and a brutal left hand on the way down appeared to be the coup de grace for the challenger.

Incredibly however, Fury managed to pick himself up and clear his head to survive the remainder of the round and escape with a draw.

Surianah's top five jazz artists

Billie Holliday: for the burn and also the way she told stories.  

Thelonius Monk: for his earnestness.

Duke Ellington: for his edge and spirituality.

Louis Armstrong: his legacy is undeniable. He is considered as one of the most revolutionary and influential musicians.

Terence Blanchard: very political - a lot of jazz musicians are making protest music right now.

Surianah's top five jazz artists

Billie Holliday: for the burn and also the way she told stories.  

Thelonius Monk: for his earnestness.

Duke Ellington: for his edge and spirituality.

Louis Armstrong: his legacy is undeniable. He is considered as one of the most revolutionary and influential musicians.

Terence Blanchard: very political - a lot of jazz musicians are making protest music right now.

Surianah's top five jazz artists

Billie Holliday: for the burn and also the way she told stories.  

Thelonius Monk: for his earnestness.

Duke Ellington: for his edge and spirituality.

Louis Armstrong: his legacy is undeniable. He is considered as one of the most revolutionary and influential musicians.

Terence Blanchard: very political - a lot of jazz musicians are making protest music right now.

Surianah's top five jazz artists

Billie Holliday: for the burn and also the way she told stories.  

Thelonius Monk: for his earnestness.

Duke Ellington: for his edge and spirituality.

Louis Armstrong: his legacy is undeniable. He is considered as one of the most revolutionary and influential musicians.

Terence Blanchard: very political - a lot of jazz musicians are making protest music right now.

Surianah's top five jazz artists

Billie Holliday: for the burn and also the way she told stories.  

Thelonius Monk: for his earnestness.

Duke Ellington: for his edge and spirituality.

Louis Armstrong: his legacy is undeniable. He is considered as one of the most revolutionary and influential musicians.

Terence Blanchard: very political - a lot of jazz musicians are making protest music right now.

Surianah's top five jazz artists

Billie Holliday: for the burn and also the way she told stories.  

Thelonius Monk: for his earnestness.

Duke Ellington: for his edge and spirituality.

Louis Armstrong: his legacy is undeniable. He is considered as one of the most revolutionary and influential musicians.

Terence Blanchard: very political - a lot of jazz musicians are making protest music right now.

Surianah's top five jazz artists

Billie Holliday: for the burn and also the way she told stories.  

Thelonius Monk: for his earnestness.

Duke Ellington: for his edge and spirituality.

Louis Armstrong: his legacy is undeniable. He is considered as one of the most revolutionary and influential musicians.

Terence Blanchard: very political - a lot of jazz musicians are making protest music right now.

Surianah's top five jazz artists

Billie Holliday: for the burn and also the way she told stories.  

Thelonius Monk: for his earnestness.

Duke Ellington: for his edge and spirituality.

Louis Armstrong: his legacy is undeniable. He is considered as one of the most revolutionary and influential musicians.

Terence Blanchard: very political - a lot of jazz musicians are making protest music right now.

Surianah's top five jazz artists

Billie Holliday: for the burn and also the way she told stories.  

Thelonius Monk: for his earnestness.

Duke Ellington: for his edge and spirituality.

Louis Armstrong: his legacy is undeniable. He is considered as one of the most revolutionary and influential musicians.

Terence Blanchard: very political - a lot of jazz musicians are making protest music right now.

Surianah's top five jazz artists

Billie Holliday: for the burn and also the way she told stories.  

Thelonius Monk: for his earnestness.

Duke Ellington: for his edge and spirituality.

Louis Armstrong: his legacy is undeniable. He is considered as one of the most revolutionary and influential musicians.

Terence Blanchard: very political - a lot of jazz musicians are making protest music right now.

Surianah's top five jazz artists

Billie Holliday: for the burn and also the way she told stories.  

Thelonius Monk: for his earnestness.

Duke Ellington: for his edge and spirituality.

Louis Armstrong: his legacy is undeniable. He is considered as one of the most revolutionary and influential musicians.

Terence Blanchard: very political - a lot of jazz musicians are making protest music right now.

Surianah's top five jazz artists

Billie Holliday: for the burn and also the way she told stories.  

Thelonius Monk: for his earnestness.

Duke Ellington: for his edge and spirituality.

Louis Armstrong: his legacy is undeniable. He is considered as one of the most revolutionary and influential musicians.

Terence Blanchard: very political - a lot of jazz musicians are making protest music right now.

Surianah's top five jazz artists

Billie Holliday: for the burn and also the way she told stories.  

Thelonius Monk: for his earnestness.

Duke Ellington: for his edge and spirituality.

Louis Armstrong: his legacy is undeniable. He is considered as one of the most revolutionary and influential musicians.

Terence Blanchard: very political - a lot of jazz musicians are making protest music right now.

Surianah's top five jazz artists

Billie Holliday: for the burn and also the way she told stories.  

Thelonius Monk: for his earnestness.

Duke Ellington: for his edge and spirituality.

Louis Armstrong: his legacy is undeniable. He is considered as one of the most revolutionary and influential musicians.

Terence Blanchard: very political - a lot of jazz musicians are making protest music right now.

Surianah's top five jazz artists

Billie Holliday: for the burn and also the way she told stories.  

Thelonius Monk: for his earnestness.

Duke Ellington: for his edge and spirituality.

Louis Armstrong: his legacy is undeniable. He is considered as one of the most revolutionary and influential musicians.

Terence Blanchard: very political - a lot of jazz musicians are making protest music right now.

Surianah's top five jazz artists

Billie Holliday: for the burn and also the way she told stories.  

Thelonius Monk: for his earnestness.

Duke Ellington: for his edge and spirituality.

Louis Armstrong: his legacy is undeniable. He is considered as one of the most revolutionary and influential musicians.

Terence Blanchard: very political - a lot of jazz musicians are making protest music right now.

Some of Darwish's last words

"They see their tomorrows slipping out of their reach. And though it seems to them that everything outside this reality is heaven, yet they do not want to go to that heaven. They stay, because they are afflicted with hope." - Mahmoud Darwish, to attendees of the Palestine Festival of Literature, 2008

His life in brief: Born in a village near Galilee, he lived in exile for most of his life and started writing poetry after high school. He was arrested several times by Israel for what were deemed to be inciteful poems. Most of his work focused on the love and yearning for his homeland, and he was regarded the Palestinian poet of resistance. Over the course of his life, he published more than 30 poetry collections and books of prose, with his work translated into more than 20 languages. Many of his poems were set to music by Arab composers, most significantly Marcel Khalife. Darwish died on August 9, 2008 after undergoing heart surgery in the United States. He was later buried in Ramallah where a shrine was erected in his honour.

Some of Darwish's last words

"They see their tomorrows slipping out of their reach. And though it seems to them that everything outside this reality is heaven, yet they do not want to go to that heaven. They stay, because they are afflicted with hope." - Mahmoud Darwish, to attendees of the Palestine Festival of Literature, 2008

His life in brief: Born in a village near Galilee, he lived in exile for most of his life and started writing poetry after high school. He was arrested several times by Israel for what were deemed to be inciteful poems. Most of his work focused on the love and yearning for his homeland, and he was regarded the Palestinian poet of resistance. Over the course of his life, he published more than 30 poetry collections and books of prose, with his work translated into more than 20 languages. Many of his poems were set to music by Arab composers, most significantly Marcel Khalife. Darwish died on August 9, 2008 after undergoing heart surgery in the United States. He was later buried in Ramallah where a shrine was erected in his honour.

Some of Darwish's last words

"They see their tomorrows slipping out of their reach. And though it seems to them that everything outside this reality is heaven, yet they do not want to go to that heaven. They stay, because they are afflicted with hope." - Mahmoud Darwish, to attendees of the Palestine Festival of Literature, 2008

His life in brief: Born in a village near Galilee, he lived in exile for most of his life and started writing poetry after high school. He was arrested several times by Israel for what were deemed to be inciteful poems. Most of his work focused on the love and yearning for his homeland, and he was regarded the Palestinian poet of resistance. Over the course of his life, he published more than 30 poetry collections and books of prose, with his work translated into more than 20 languages. Many of his poems were set to music by Arab composers, most significantly Marcel Khalife. Darwish died on August 9, 2008 after undergoing heart surgery in the United States. He was later buried in Ramallah where a shrine was erected in his honour.

Some of Darwish's last words

"They see their tomorrows slipping out of their reach. And though it seems to them that everything outside this reality is heaven, yet they do not want to go to that heaven. They stay, because they are afflicted with hope." - Mahmoud Darwish, to attendees of the Palestine Festival of Literature, 2008

His life in brief: Born in a village near Galilee, he lived in exile for most of his life and started writing poetry after high school. He was arrested several times by Israel for what were deemed to be inciteful poems. Most of his work focused on the love and yearning for his homeland, and he was regarded the Palestinian poet of resistance. Over the course of his life, he published more than 30 poetry collections and books of prose, with his work translated into more than 20 languages. Many of his poems were set to music by Arab composers, most significantly Marcel Khalife. Darwish died on August 9, 2008 after undergoing heart surgery in the United States. He was later buried in Ramallah where a shrine was erected in his honour.

Some of Darwish's last words

"They see their tomorrows slipping out of their reach. And though it seems to them that everything outside this reality is heaven, yet they do not want to go to that heaven. They stay, because they are afflicted with hope." - Mahmoud Darwish, to attendees of the Palestine Festival of Literature, 2008

His life in brief: Born in a village near Galilee, he lived in exile for most of his life and started writing poetry after high school. He was arrested several times by Israel for what were deemed to be inciteful poems. Most of his work focused on the love and yearning for his homeland, and he was regarded the Palestinian poet of resistance. Over the course of his life, he published more than 30 poetry collections and books of prose, with his work translated into more than 20 languages. Many of his poems were set to music by Arab composers, most significantly Marcel Khalife. Darwish died on August 9, 2008 after undergoing heart surgery in the United States. He was later buried in Ramallah where a shrine was erected in his honour.

Some of Darwish's last words

"They see their tomorrows slipping out of their reach. And though it seems to them that everything outside this reality is heaven, yet they do not want to go to that heaven. They stay, because they are afflicted with hope." - Mahmoud Darwish, to attendees of the Palestine Festival of Literature, 2008

His life in brief: Born in a village near Galilee, he lived in exile for most of his life and started writing poetry after high school. He was arrested several times by Israel for what were deemed to be inciteful poems. Most of his work focused on the love and yearning for his homeland, and he was regarded the Palestinian poet of resistance. Over the course of his life, he published more than 30 poetry collections and books of prose, with his work translated into more than 20 languages. Many of his poems were set to music by Arab composers, most significantly Marcel Khalife. Darwish died on August 9, 2008 after undergoing heart surgery in the United States. He was later buried in Ramallah where a shrine was erected in his honour.

Some of Darwish's last words

"They see their tomorrows slipping out of their reach. And though it seems to them that everything outside this reality is heaven, yet they do not want to go to that heaven. They stay, because they are afflicted with hope." - Mahmoud Darwish, to attendees of the Palestine Festival of Literature, 2008

His life in brief: Born in a village near Galilee, he lived in exile for most of his life and started writing poetry after high school. He was arrested several times by Israel for what were deemed to be inciteful poems. Most of his work focused on the love and yearning for his homeland, and he was regarded the Palestinian poet of resistance. Over the course of his life, he published more than 30 poetry collections and books of prose, with his work translated into more than 20 languages. Many of his poems were set to music by Arab composers, most significantly Marcel Khalife. Darwish died on August 9, 2008 after undergoing heart surgery in the United States. He was later buried in Ramallah where a shrine was erected in his honour.

Some of Darwish's last words

"They see their tomorrows slipping out of their reach. And though it seems to them that everything outside this reality is heaven, yet they do not want to go to that heaven. They stay, because they are afflicted with hope." - Mahmoud Darwish, to attendees of the Palestine Festival of Literature, 2008

His life in brief: Born in a village near Galilee, he lived in exile for most of his life and started writing poetry after high school. He was arrested several times by Israel for what were deemed to be inciteful poems. Most of his work focused on the love and yearning for his homeland, and he was regarded the Palestinian poet of resistance. Over the course of his life, he published more than 30 poetry collections and books of prose, with his work translated into more than 20 languages. Many of his poems were set to music by Arab composers, most significantly Marcel Khalife. Darwish died on August 9, 2008 after undergoing heart surgery in the United States. He was later buried in Ramallah where a shrine was erected in his honour.

Some of Darwish's last words

"They see their tomorrows slipping out of their reach. And though it seems to them that everything outside this reality is heaven, yet they do not want to go to that heaven. They stay, because they are afflicted with hope." - Mahmoud Darwish, to attendees of the Palestine Festival of Literature, 2008

His life in brief: Born in a village near Galilee, he lived in exile for most of his life and started writing poetry after high school. He was arrested several times by Israel for what were deemed to be inciteful poems. Most of his work focused on the love and yearning for his homeland, and he was regarded the Palestinian poet of resistance. Over the course of his life, he published more than 30 poetry collections and books of prose, with his work translated into more than 20 languages. Many of his poems were set to music by Arab composers, most significantly Marcel Khalife. Darwish died on August 9, 2008 after undergoing heart surgery in the United States. He was later buried in Ramallah where a shrine was erected in his honour.

Some of Darwish's last words

"They see their tomorrows slipping out of their reach. And though it seems to them that everything outside this reality is heaven, yet they do not want to go to that heaven. They stay, because they are afflicted with hope." - Mahmoud Darwish, to attendees of the Palestine Festival of Literature, 2008

His life in brief: Born in a village near Galilee, he lived in exile for most of his life and started writing poetry after high school. He was arrested several times by Israel for what were deemed to be inciteful poems. Most of his work focused on the love and yearning for his homeland, and he was regarded the Palestinian poet of resistance. Over the course of his life, he published more than 30 poetry collections and books of prose, with his work translated into more than 20 languages. Many of his poems were set to music by Arab composers, most significantly Marcel Khalife. Darwish died on August 9, 2008 after undergoing heart surgery in the United States. He was later buried in Ramallah where a shrine was erected in his honour.

Some of Darwish's last words

"They see their tomorrows slipping out of their reach. And though it seems to them that everything outside this reality is heaven, yet they do not want to go to that heaven. They stay, because they are afflicted with hope." - Mahmoud Darwish, to attendees of the Palestine Festival of Literature, 2008

His life in brief: Born in a village near Galilee, he lived in exile for most of his life and started writing poetry after high school. He was arrested several times by Israel for what were deemed to be inciteful poems. Most of his work focused on the love and yearning for his homeland, and he was regarded the Palestinian poet of resistance. Over the course of his life, he published more than 30 poetry collections and books of prose, with his work translated into more than 20 languages. Many of his poems were set to music by Arab composers, most significantly Marcel Khalife. Darwish died on August 9, 2008 after undergoing heart surgery in the United States. He was later buried in Ramallah where a shrine was erected in his honour.

Some of Darwish's last words

"They see their tomorrows slipping out of their reach. And though it seems to them that everything outside this reality is heaven, yet they do not want to go to that heaven. They stay, because they are afflicted with hope." - Mahmoud Darwish, to attendees of the Palestine Festival of Literature, 2008

His life in brief: Born in a village near Galilee, he lived in exile for most of his life and started writing poetry after high school. He was arrested several times by Israel for what were deemed to be inciteful poems. Most of his work focused on the love and yearning for his homeland, and he was regarded the Palestinian poet of resistance. Over the course of his life, he published more than 30 poetry collections and books of prose, with his work translated into more than 20 languages. Many of his poems were set to music by Arab composers, most significantly Marcel Khalife. Darwish died on August 9, 2008 after undergoing heart surgery in the United States. He was later buried in Ramallah where a shrine was erected in his honour.

Some of Darwish's last words

"They see their tomorrows slipping out of their reach. And though it seems to them that everything outside this reality is heaven, yet they do not want to go to that heaven. They stay, because they are afflicted with hope." - Mahmoud Darwish, to attendees of the Palestine Festival of Literature, 2008

His life in brief: Born in a village near Galilee, he lived in exile for most of his life and started writing poetry after high school. He was arrested several times by Israel for what were deemed to be inciteful poems. Most of his work focused on the love and yearning for his homeland, and he was regarded the Palestinian poet of resistance. Over the course of his life, he published more than 30 poetry collections and books of prose, with his work translated into more than 20 languages. Many of his poems were set to music by Arab composers, most significantly Marcel Khalife. Darwish died on August 9, 2008 after undergoing heart surgery in the United States. He was later buried in Ramallah where a shrine was erected in his honour.

Some of Darwish's last words

"They see their tomorrows slipping out of their reach. And though it seems to them that everything outside this reality is heaven, yet they do not want to go to that heaven. They stay, because they are afflicted with hope." - Mahmoud Darwish, to attendees of the Palestine Festival of Literature, 2008

His life in brief: Born in a village near Galilee, he lived in exile for most of his life and started writing poetry after high school. He was arrested several times by Israel for what were deemed to be inciteful poems. Most of his work focused on the love and yearning for his homeland, and he was regarded the Palestinian poet of resistance. Over the course of his life, he published more than 30 poetry collections and books of prose, with his work translated into more than 20 languages. Many of his poems were set to music by Arab composers, most significantly Marcel Khalife. Darwish died on August 9, 2008 after undergoing heart surgery in the United States. He was later buried in Ramallah where a shrine was erected in his honour.

Some of Darwish's last words

"They see their tomorrows slipping out of their reach. And though it seems to them that everything outside this reality is heaven, yet they do not want to go to that heaven. They stay, because they are afflicted with hope." - Mahmoud Darwish, to attendees of the Palestine Festival of Literature, 2008

His life in brief: Born in a village near Galilee, he lived in exile for most of his life and started writing poetry after high school. He was arrested several times by Israel for what were deemed to be inciteful poems. Most of his work focused on the love and yearning for his homeland, and he was regarded the Palestinian poet of resistance. Over the course of his life, he published more than 30 poetry collections and books of prose, with his work translated into more than 20 languages. Many of his poems were set to music by Arab composers, most significantly Marcel Khalife. Darwish died on August 9, 2008 after undergoing heart surgery in the United States. He was later buried in Ramallah where a shrine was erected in his honour.

Some of Darwish's last words

"They see their tomorrows slipping out of their reach. And though it seems to them that everything outside this reality is heaven, yet they do not want to go to that heaven. They stay, because they are afflicted with hope." - Mahmoud Darwish, to attendees of the Palestine Festival of Literature, 2008

His life in brief: Born in a village near Galilee, he lived in exile for most of his life and started writing poetry after high school. He was arrested several times by Israel for what were deemed to be inciteful poems. Most of his work focused on the love and yearning for his homeland, and he was regarded the Palestinian poet of resistance. Over the course of his life, he published more than 30 poetry collections and books of prose, with his work translated into more than 20 languages. Many of his poems were set to music by Arab composers, most significantly Marcel Khalife. Darwish died on August 9, 2008 after undergoing heart surgery in the United States. He was later buried in Ramallah where a shrine was erected in his honour.

From Conquest to Deportation

Jeronim Perovic, Hurst

From Conquest to Deportation

Jeronim Perovic, Hurst

From Conquest to Deportation

Jeronim Perovic, Hurst

From Conquest to Deportation

Jeronim Perovic, Hurst

From Conquest to Deportation

Jeronim Perovic, Hurst

From Conquest to Deportation

Jeronim Perovic, Hurst

From Conquest to Deportation

Jeronim Perovic, Hurst

From Conquest to Deportation

Jeronim Perovic, Hurst

From Conquest to Deportation

Jeronim Perovic, Hurst

From Conquest to Deportation

Jeronim Perovic, Hurst

From Conquest to Deportation

Jeronim Perovic, Hurst

From Conquest to Deportation

Jeronim Perovic, Hurst

From Conquest to Deportation

Jeronim Perovic, Hurst

From Conquest to Deportation

Jeronim Perovic, Hurst

From Conquest to Deportation

Jeronim Perovic, Hurst

From Conquest to Deportation

Jeronim Perovic, Hurst

Lowest Test scores

26 - New Zealand v England at Auckland, March 1955

30 - South Africa v England at Port Elizabeth, Feb 1896

30 - South Africa v England at Birmingham, June 1924

35 - South Africa v England at Cape Town, April 1899

36 - South Africa v Australia at Melbourne, Feb. 1932

36 - Australia v England at Birmingham, May 1902

36 - India v Australia at Adelaide, Dec. 2020

38 - Ireland v England at Lord's, July 2019

42 - New Zealand v Australia in Wellington, March 1946

42 - Australia v England in Sydney, Feb. 1888

Lowest Test scores

26 - New Zealand v England at Auckland, March 1955

30 - South Africa v England at Port Elizabeth, Feb 1896

30 - South Africa v England at Birmingham, June 1924

35 - South Africa v England at Cape Town, April 1899

36 - South Africa v Australia at Melbourne, Feb. 1932

36 - Australia v England at Birmingham, May 1902

36 - India v Australia at Adelaide, Dec. 2020

38 - Ireland v England at Lord's, July 2019

42 - New Zealand v Australia in Wellington, March 1946

42 - Australia v England in Sydney, Feb. 1888

Lowest Test scores

26 - New Zealand v England at Auckland, March 1955

30 - South Africa v England at Port Elizabeth, Feb 1896

30 - South Africa v England at Birmingham, June 1924

35 - South Africa v England at Cape Town, April 1899

36 - South Africa v Australia at Melbourne, Feb. 1932

36 - Australia v England at Birmingham, May 1902

36 - India v Australia at Adelaide, Dec. 2020

38 - Ireland v England at Lord's, July 2019

42 - New Zealand v Australia in Wellington, March 1946

42 - Australia v England in Sydney, Feb. 1888

Lowest Test scores

26 - New Zealand v England at Auckland, March 1955

30 - South Africa v England at Port Elizabeth, Feb 1896

30 - South Africa v England at Birmingham, June 1924

35 - South Africa v England at Cape Town, April 1899

36 - South Africa v Australia at Melbourne, Feb. 1932

36 - Australia v England at Birmingham, May 1902

36 - India v Australia at Adelaide, Dec. 2020

38 - Ireland v England at Lord's, July 2019

42 - New Zealand v Australia in Wellington, March 1946

42 - Australia v England in Sydney, Feb. 1888

Lowest Test scores

26 - New Zealand v England at Auckland, March 1955

30 - South Africa v England at Port Elizabeth, Feb 1896

30 - South Africa v England at Birmingham, June 1924

35 - South Africa v England at Cape Town, April 1899

36 - South Africa v Australia at Melbourne, Feb. 1932

36 - Australia v England at Birmingham, May 1902

36 - India v Australia at Adelaide, Dec. 2020

38 - Ireland v England at Lord's, July 2019

42 - New Zealand v Australia in Wellington, March 1946

42 - Australia v England in Sydney, Feb. 1888

Lowest Test scores

26 - New Zealand v England at Auckland, March 1955

30 - South Africa v England at Port Elizabeth, Feb 1896

30 - South Africa v England at Birmingham, June 1924

35 - South Africa v England at Cape Town, April 1899

36 - South Africa v Australia at Melbourne, Feb. 1932

36 - Australia v England at Birmingham, May 1902

36 - India v Australia at Adelaide, Dec. 2020

38 - Ireland v England at Lord's, July 2019

42 - New Zealand v Australia in Wellington, March 1946

42 - Australia v England in Sydney, Feb. 1888

Lowest Test scores

26 - New Zealand v England at Auckland, March 1955

30 - South Africa v England at Port Elizabeth, Feb 1896

30 - South Africa v England at Birmingham, June 1924

35 - South Africa v England at Cape Town, April 1899

36 - South Africa v Australia at Melbourne, Feb. 1932

36 - Australia v England at Birmingham, May 1902

36 - India v Australia at Adelaide, Dec. 2020

38 - Ireland v England at Lord's, July 2019

42 - New Zealand v Australia in Wellington, March 1946

42 - Australia v England in Sydney, Feb. 1888

Lowest Test scores

26 - New Zealand v England at Auckland, March 1955

30 - South Africa v England at Port Elizabeth, Feb 1896

30 - South Africa v England at Birmingham, June 1924

35 - South Africa v England at Cape Town, April 1899

36 - South Africa v Australia at Melbourne, Feb. 1932

36 - Australia v England at Birmingham, May 1902

36 - India v Australia at Adelaide, Dec. 2020

38 - Ireland v England at Lord's, July 2019

42 - New Zealand v Australia in Wellington, March 1946

42 - Australia v England in Sydney, Feb. 1888

Lowest Test scores

26 - New Zealand v England at Auckland, March 1955

30 - South Africa v England at Port Elizabeth, Feb 1896

30 - South Africa v England at Birmingham, June 1924

35 - South Africa v England at Cape Town, April 1899

36 - South Africa v Australia at Melbourne, Feb. 1932

36 - Australia v England at Birmingham, May 1902

36 - India v Australia at Adelaide, Dec. 2020

38 - Ireland v England at Lord's, July 2019

42 - New Zealand v Australia in Wellington, March 1946

42 - Australia v England in Sydney, Feb. 1888

Lowest Test scores

26 - New Zealand v England at Auckland, March 1955

30 - South Africa v England at Port Elizabeth, Feb 1896

30 - South Africa v England at Birmingham, June 1924

35 - South Africa v England at Cape Town, April 1899

36 - South Africa v Australia at Melbourne, Feb. 1932

36 - Australia v England at Birmingham, May 1902

36 - India v Australia at Adelaide, Dec. 2020

38 - Ireland v England at Lord's, July 2019

42 - New Zealand v Australia in Wellington, March 1946

42 - Australia v England in Sydney, Feb. 1888

Lowest Test scores

26 - New Zealand v England at Auckland, March 1955

30 - South Africa v England at Port Elizabeth, Feb 1896

30 - South Africa v England at Birmingham, June 1924

35 - South Africa v England at Cape Town, April 1899

36 - South Africa v Australia at Melbourne, Feb. 1932

36 - Australia v England at Birmingham, May 1902

36 - India v Australia at Adelaide, Dec. 2020

38 - Ireland v England at Lord's, July 2019

42 - New Zealand v Australia in Wellington, March 1946

42 - Australia v England in Sydney, Feb. 1888

Lowest Test scores

26 - New Zealand v England at Auckland, March 1955

30 - South Africa v England at Port Elizabeth, Feb 1896

30 - South Africa v England at Birmingham, June 1924

35 - South Africa v England at Cape Town, April 1899

36 - South Africa v Australia at Melbourne, Feb. 1932

36 - Australia v England at Birmingham, May 1902

36 - India v Australia at Adelaide, Dec. 2020

38 - Ireland v England at Lord's, July 2019

42 - New Zealand v Australia in Wellington, March 1946

42 - Australia v England in Sydney, Feb. 1888

Lowest Test scores

26 - New Zealand v England at Auckland, March 1955

30 - South Africa v England at Port Elizabeth, Feb 1896

30 - South Africa v England at Birmingham, June 1924

35 - South Africa v England at Cape Town, April 1899

36 - South Africa v Australia at Melbourne, Feb. 1932

36 - Australia v England at Birmingham, May 1902

36 - India v Australia at Adelaide, Dec. 2020

38 - Ireland v England at Lord's, July 2019

42 - New Zealand v Australia in Wellington, March 1946

42 - Australia v England in Sydney, Feb. 1888

Lowest Test scores

26 - New Zealand v England at Auckland, March 1955

30 - South Africa v England at Port Elizabeth, Feb 1896

30 - South Africa v England at Birmingham, June 1924

35 - South Africa v England at Cape Town, April 1899

36 - South Africa v Australia at Melbourne, Feb. 1932

36 - Australia v England at Birmingham, May 1902

36 - India v Australia at Adelaide, Dec. 2020

38 - Ireland v England at Lord's, July 2019

42 - New Zealand v Australia in Wellington, March 1946

42 - Australia v England in Sydney, Feb. 1888

Lowest Test scores

26 - New Zealand v England at Auckland, March 1955

30 - South Africa v England at Port Elizabeth, Feb 1896

30 - South Africa v England at Birmingham, June 1924

35 - South Africa v England at Cape Town, April 1899

36 - South Africa v Australia at Melbourne, Feb. 1932

36 - Australia v England at Birmingham, May 1902

36 - India v Australia at Adelaide, Dec. 2020

38 - Ireland v England at Lord's, July 2019

42 - New Zealand v Australia in Wellington, March 1946

42 - Australia v England in Sydney, Feb. 1888

Lowest Test scores

26 - New Zealand v England at Auckland, March 1955

30 - South Africa v England at Port Elizabeth, Feb 1896

30 - South Africa v England at Birmingham, June 1924

35 - South Africa v England at Cape Town, April 1899

36 - South Africa v Australia at Melbourne, Feb. 1932

36 - Australia v England at Birmingham, May 1902

36 - India v Australia at Adelaide, Dec. 2020

38 - Ireland v England at Lord's, July 2019

42 - New Zealand v Australia in Wellington, March 1946

42 - Australia v England in Sydney, Feb. 1888

What is graphene?

Graphene is a single layer of carbon atoms arranged like honeycomb.

It was discovered in 2004, when Russian-born Manchester scientists Andrei Geim and Kostya Novoselov were "playing about" with sticky tape and graphite - the material used as "lead" in pencils.

Placing the tape on the graphite and peeling it, they managed to rip off thin flakes of carbon. In the beginning they got flakes consisting of many layers of graphene. But as they repeated the process many times, the flakes got thinner.

By separating the graphite fragments repeatedly, they managed to create flakes that were just one atom thick. Their experiment had led to graphene being isolated for the very first time.

At the time, many believed it was impossible for such thin crystalline materials to be stable. But examined under a microscope, the material remained stable, and when tested was found to have incredible properties.

It is many times times stronger than steel, yet incredibly lightweight and flexible. It is electrically and thermally conductive but also transparent. The world's first 2D material, it is one million times thinner than the diameter of a single human hair.

But the 'sticky tape' method would not work on an industrial scale. Since then, scientists have been working on manufacturing graphene, to make use of its incredible properties.

In 2010, Geim and Novoselov were awarded the Nobel Prize for Physics. Their discovery meant physicists could study a new class of two-dimensional materials with unique properties. 

 

What is graphene?

Graphene is a single layer of carbon atoms arranged like honeycomb.

It was discovered in 2004, when Russian-born Manchester scientists Andrei Geim and Kostya Novoselov were "playing about" with sticky tape and graphite - the material used as "lead" in pencils.

Placing the tape on the graphite and peeling it, they managed to rip off thin flakes of carbon. In the beginning they got flakes consisting of many layers of graphene. But as they repeated the process many times, the flakes got thinner.

By separating the graphite fragments repeatedly, they managed to create flakes that were just one atom thick. Their experiment had led to graphene being isolated for the very first time.

At the time, many believed it was impossible for such thin crystalline materials to be stable. But examined under a microscope, the material remained stable, and when tested was found to have incredible properties.

It is many times times stronger than steel, yet incredibly lightweight and flexible. It is electrically and thermally conductive but also transparent. The world's first 2D material, it is one million times thinner than the diameter of a single human hair.

But the 'sticky tape' method would not work on an industrial scale. Since then, scientists have been working on manufacturing graphene, to make use of its incredible properties.

In 2010, Geim and Novoselov were awarded the Nobel Prize for Physics. Their discovery meant physicists could study a new class of two-dimensional materials with unique properties. 

 

What is graphene?

Graphene is a single layer of carbon atoms arranged like honeycomb.

It was discovered in 2004, when Russian-born Manchester scientists Andrei Geim and Kostya Novoselov were "playing about" with sticky tape and graphite - the material used as "lead" in pencils.

Placing the tape on the graphite and peeling it, they managed to rip off thin flakes of carbon. In the beginning they got flakes consisting of many layers of graphene. But as they repeated the process many times, the flakes got thinner.

By separating the graphite fragments repeatedly, they managed to create flakes that were just one atom thick. Their experiment had led to graphene being isolated for the very first time.

At the time, many believed it was impossible for such thin crystalline materials to be stable. But examined under a microscope, the material remained stable, and when tested was found to have incredible properties.

It is many times times stronger than steel, yet incredibly lightweight and flexible. It is electrically and thermally conductive but also transparent. The world's first 2D material, it is one million times thinner than the diameter of a single human hair.

But the 'sticky tape' method would not work on an industrial scale. Since then, scientists have been working on manufacturing graphene, to make use of its incredible properties.

In 2010, Geim and Novoselov were awarded the Nobel Prize for Physics. Their discovery meant physicists could study a new class of two-dimensional materials with unique properties. 

 

What is graphene?

Graphene is a single layer of carbon atoms arranged like honeycomb.

It was discovered in 2004, when Russian-born Manchester scientists Andrei Geim and Kostya Novoselov were "playing about" with sticky tape and graphite - the material used as "lead" in pencils.

Placing the tape on the graphite and peeling it, they managed to rip off thin flakes of carbon. In the beginning they got flakes consisting of many layers of graphene. But as they repeated the process many times, the flakes got thinner.

By separating the graphite fragments repeatedly, they managed to create flakes that were just one atom thick. Their experiment had led to graphene being isolated for the very first time.

At the time, many believed it was impossible for such thin crystalline materials to be stable. But examined under a microscope, the material remained stable, and when tested was found to have incredible properties.

It is many times times stronger than steel, yet incredibly lightweight and flexible. It is electrically and thermally conductive but also transparent. The world's first 2D material, it is one million times thinner than the diameter of a single human hair.

But the 'sticky tape' method would not work on an industrial scale. Since then, scientists have been working on manufacturing graphene, to make use of its incredible properties.

In 2010, Geim and Novoselov were awarded the Nobel Prize for Physics. Their discovery meant physicists could study a new class of two-dimensional materials with unique properties. 

 

What is graphene?

Graphene is a single layer of carbon atoms arranged like honeycomb.

It was discovered in 2004, when Russian-born Manchester scientists Andrei Geim and Kostya Novoselov were "playing about" with sticky tape and graphite - the material used as "lead" in pencils.

Placing the tape on the graphite and peeling it, they managed to rip off thin flakes of carbon. In the beginning they got flakes consisting of many layers of graphene. But as they repeated the process many times, the flakes got thinner.

By separating the graphite fragments repeatedly, they managed to create flakes that were just one atom thick. Their experiment had led to graphene being isolated for the very first time.

At the time, many believed it was impossible for such thin crystalline materials to be stable. But examined under a microscope, the material remained stable, and when tested was found to have incredible properties.

It is many times times stronger than steel, yet incredibly lightweight and flexible. It is electrically and thermally conductive but also transparent. The world's first 2D material, it is one million times thinner than the diameter of a single human hair.

But the 'sticky tape' method would not work on an industrial scale. Since then, scientists have been working on manufacturing graphene, to make use of its incredible properties.

In 2010, Geim and Novoselov were awarded the Nobel Prize for Physics. Their discovery meant physicists could study a new class of two-dimensional materials with unique properties. 

 

What is graphene?

Graphene is a single layer of carbon atoms arranged like honeycomb.

It was discovered in 2004, when Russian-born Manchester scientists Andrei Geim and Kostya Novoselov were "playing about" with sticky tape and graphite - the material used as "lead" in pencils.

Placing the tape on the graphite and peeling it, they managed to rip off thin flakes of carbon. In the beginning they got flakes consisting of many layers of graphene. But as they repeated the process many times, the flakes got thinner.

By separating the graphite fragments repeatedly, they managed to create flakes that were just one atom thick. Their experiment had led to graphene being isolated for the very first time.

At the time, many believed it was impossible for such thin crystalline materials to be stable. But examined under a microscope, the material remained stable, and when tested was found to have incredible properties.

It is many times times stronger than steel, yet incredibly lightweight and flexible. It is electrically and thermally conductive but also transparent. The world's first 2D material, it is one million times thinner than the diameter of a single human hair.

But the 'sticky tape' method would not work on an industrial scale. Since then, scientists have been working on manufacturing graphene, to make use of its incredible properties.

In 2010, Geim and Novoselov were awarded the Nobel Prize for Physics. Their discovery meant physicists could study a new class of two-dimensional materials with unique properties. 

 

What is graphene?

Graphene is a single layer of carbon atoms arranged like honeycomb.

It was discovered in 2004, when Russian-born Manchester scientists Andrei Geim and Kostya Novoselov were "playing about" with sticky tape and graphite - the material used as "lead" in pencils.

Placing the tape on the graphite and peeling it, they managed to rip off thin flakes of carbon. In the beginning they got flakes consisting of many layers of graphene. But as they repeated the process many times, the flakes got thinner.

By separating the graphite fragments repeatedly, they managed to create flakes that were just one atom thick. Their experiment had led to graphene being isolated for the very first time.

At the time, many believed it was impossible for such thin crystalline materials to be stable. But examined under a microscope, the material remained stable, and when tested was found to have incredible properties.

It is many times times stronger than steel, yet incredibly lightweight and flexible. It is electrically and thermally conductive but also transparent. The world's first 2D material, it is one million times thinner than the diameter of a single human hair.

But the 'sticky tape' method would not work on an industrial scale. Since then, scientists have been working on manufacturing graphene, to make use of its incredible properties.

In 2010, Geim and Novoselov were awarded the Nobel Prize for Physics. Their discovery meant physicists could study a new class of two-dimensional materials with unique properties. 

 

What is graphene?

Graphene is a single layer of carbon atoms arranged like honeycomb.

It was discovered in 2004, when Russian-born Manchester scientists Andrei Geim and Kostya Novoselov were "playing about" with sticky tape and graphite - the material used as "lead" in pencils.

Placing the tape on the graphite and peeling it, they managed to rip off thin flakes of carbon. In the beginning they got flakes consisting of many layers of graphene. But as they repeated the process many times, the flakes got thinner.

By separating the graphite fragments repeatedly, they managed to create flakes that were just one atom thick. Their experiment had led to graphene being isolated for the very first time.

At the time, many believed it was impossible for such thin crystalline materials to be stable. But examined under a microscope, the material remained stable, and when tested was found to have incredible properties.

It is many times times stronger than steel, yet incredibly lightweight and flexible. It is electrically and thermally conductive but also transparent. The world's first 2D material, it is one million times thinner than the diameter of a single human hair.

But the 'sticky tape' method would not work on an industrial scale. Since then, scientists have been working on manufacturing graphene, to make use of its incredible properties.

In 2010, Geim and Novoselov were awarded the Nobel Prize for Physics. Their discovery meant physicists could study a new class of two-dimensional materials with unique properties. 

 

What is graphene?

Graphene is a single layer of carbon atoms arranged like honeycomb.

It was discovered in 2004, when Russian-born Manchester scientists Andrei Geim and Kostya Novoselov were "playing about" with sticky tape and graphite - the material used as "lead" in pencils.

Placing the tape on the graphite and peeling it, they managed to rip off thin flakes of carbon. In the beginning they got flakes consisting of many layers of graphene. But as they repeated the process many times, the flakes got thinner.

By separating the graphite fragments repeatedly, they managed to create flakes that were just one atom thick. Their experiment had led to graphene being isolated for the very first time.

At the time, many believed it was impossible for such thin crystalline materials to be stable. But examined under a microscope, the material remained stable, and when tested was found to have incredible properties.

It is many times times stronger than steel, yet incredibly lightweight and flexible. It is electrically and thermally conductive but also transparent. The world's first 2D material, it is one million times thinner than the diameter of a single human hair.

But the 'sticky tape' method would not work on an industrial scale. Since then, scientists have been working on manufacturing graphene, to make use of its incredible properties.

In 2010, Geim and Novoselov were awarded the Nobel Prize for Physics. Their discovery meant physicists could study a new class of two-dimensional materials with unique properties. 

 

What is graphene?

Graphene is a single layer of carbon atoms arranged like honeycomb.

It was discovered in 2004, when Russian-born Manchester scientists Andrei Geim and Kostya Novoselov were "playing about" with sticky tape and graphite - the material used as "lead" in pencils.

Placing the tape on the graphite and peeling it, they managed to rip off thin flakes of carbon. In the beginning they got flakes consisting of many layers of graphene. But as they repeated the process many times, the flakes got thinner.

By separating the graphite fragments repeatedly, they managed to create flakes that were just one atom thick. Their experiment had led to graphene being isolated for the very first time.

At the time, many believed it was impossible for such thin crystalline materials to be stable. But examined under a microscope, the material remained stable, and when tested was found to have incredible properties.

It is many times times stronger than steel, yet incredibly lightweight and flexible. It is electrically and thermally conductive but also transparent. The world's first 2D material, it is one million times thinner than the diameter of a single human hair.

But the 'sticky tape' method would not work on an industrial scale. Since then, scientists have been working on manufacturing graphene, to make use of its incredible properties.

In 2010, Geim and Novoselov were awarded the Nobel Prize for Physics. Their discovery meant physicists could study a new class of two-dimensional materials with unique properties. 

 

What is graphene?

Graphene is a single layer of carbon atoms arranged like honeycomb.

It was discovered in 2004, when Russian-born Manchester scientists Andrei Geim and Kostya Novoselov were "playing about" with sticky tape and graphite - the material used as "lead" in pencils.

Placing the tape on the graphite and peeling it, they managed to rip off thin flakes of carbon. In the beginning they got flakes consisting of many layers of graphene. But as they repeated the process many times, the flakes got thinner.

By separating the graphite fragments repeatedly, they managed to create flakes that were just one atom thick. Their experiment had led to graphene being isolated for the very first time.

At the time, many believed it was impossible for such thin crystalline materials to be stable. But examined under a microscope, the material remained stable, and when tested was found to have incredible properties.

It is many times times stronger than steel, yet incredibly lightweight and flexible. It is electrically and thermally conductive but also transparent. The world's first 2D material, it is one million times thinner than the diameter of a single human hair.

But the 'sticky tape' method would not work on an industrial scale. Since then, scientists have been working on manufacturing graphene, to make use of its incredible properties.

In 2010, Geim and Novoselov were awarded the Nobel Prize for Physics. Their discovery meant physicists could study a new class of two-dimensional materials with unique properties. 

 

What is graphene?

Graphene is a single layer of carbon atoms arranged like honeycomb.

It was discovered in 2004, when Russian-born Manchester scientists Andrei Geim and Kostya Novoselov were "playing about" with sticky tape and graphite - the material used as "lead" in pencils.

Placing the tape on the graphite and peeling it, they managed to rip off thin flakes of carbon. In the beginning they got flakes consisting of many layers of graphene. But as they repeated the process many times, the flakes got thinner.

By separating the graphite fragments repeatedly, they managed to create flakes that were just one atom thick. Their experiment had led to graphene being isolated for the very first time.

At the time, many believed it was impossible for such thin crystalline materials to be stable. But examined under a microscope, the material remained stable, and when tested was found to have incredible properties.

It is many times times stronger than steel, yet incredibly lightweight and flexible. It is electrically and thermally conductive but also transparent. The world's first 2D material, it is one million times thinner than the diameter of a single human hair.

But the 'sticky tape' method would not work on an industrial scale. Since then, scientists have been working on manufacturing graphene, to make use of its incredible properties.

In 2010, Geim and Novoselov were awarded the Nobel Prize for Physics. Their discovery meant physicists could study a new class of two-dimensional materials with unique properties. 

 

What is graphene?

Graphene is a single layer of carbon atoms arranged like honeycomb.

It was discovered in 2004, when Russian-born Manchester scientists Andrei Geim and Kostya Novoselov were "playing about" with sticky tape and graphite - the material used as "lead" in pencils.

Placing the tape on the graphite and peeling it, they managed to rip off thin flakes of carbon. In the beginning they got flakes consisting of many layers of graphene. But as they repeated the process many times, the flakes got thinner.

By separating the graphite fragments repeatedly, they managed to create flakes that were just one atom thick. Their experiment had led to graphene being isolated for the very first time.

At the time, many believed it was impossible for such thin crystalline materials to be stable. But examined under a microscope, the material remained stable, and when tested was found to have incredible properties.

It is many times times stronger than steel, yet incredibly lightweight and flexible. It is electrically and thermally conductive but also transparent. The world's first 2D material, it is one million times thinner than the diameter of a single human hair.

But the 'sticky tape' method would not work on an industrial scale. Since then, scientists have been working on manufacturing graphene, to make use of its incredible properties.

In 2010, Geim and Novoselov were awarded the Nobel Prize for Physics. Their discovery meant physicists could study a new class of two-dimensional materials with unique properties. 

 

What is graphene?

Graphene is a single layer of carbon atoms arranged like honeycomb.

It was discovered in 2004, when Russian-born Manchester scientists Andrei Geim and Kostya Novoselov were "playing about" with sticky tape and graphite - the material used as "lead" in pencils.

Placing the tape on the graphite and peeling it, they managed to rip off thin flakes of carbon. In the beginning they got flakes consisting of many layers of graphene. But as they repeated the process many times, the flakes got thinner.

By separating the graphite fragments repeatedly, they managed to create flakes that were just one atom thick. Their experiment had led to graphene being isolated for the very first time.

At the time, many believed it was impossible for such thin crystalline materials to be stable. But examined under a microscope, the material remained stable, and when tested was found to have incredible properties.

It is many times times stronger than steel, yet incredibly lightweight and flexible. It is electrically and thermally conductive but also transparent. The world's first 2D material, it is one million times thinner than the diameter of a single human hair.

But the 'sticky tape' method would not work on an industrial scale. Since then, scientists have been working on manufacturing graphene, to make use of its incredible properties.

In 2010, Geim and Novoselov were awarded the Nobel Prize for Physics. Their discovery meant physicists could study a new class of two-dimensional materials with unique properties. 

 

What is graphene?

Graphene is a single layer of carbon atoms arranged like honeycomb.

It was discovered in 2004, when Russian-born Manchester scientists Andrei Geim and Kostya Novoselov were "playing about" with sticky tape and graphite - the material used as "lead" in pencils.

Placing the tape on the graphite and peeling it, they managed to rip off thin flakes of carbon. In the beginning they got flakes consisting of many layers of graphene. But as they repeated the process many times, the flakes got thinner.

By separating the graphite fragments repeatedly, they managed to create flakes that were just one atom thick. Their experiment had led to graphene being isolated for the very first time.

At the time, many believed it was impossible for such thin crystalline materials to be stable. But examined under a microscope, the material remained stable, and when tested was found to have incredible properties.

It is many times times stronger than steel, yet incredibly lightweight and flexible. It is electrically and thermally conductive but also transparent. The world's first 2D material, it is one million times thinner than the diameter of a single human hair.

But the 'sticky tape' method would not work on an industrial scale. Since then, scientists have been working on manufacturing graphene, to make use of its incredible properties.

In 2010, Geim and Novoselov were awarded the Nobel Prize for Physics. Their discovery meant physicists could study a new class of two-dimensional materials with unique properties. 

 

What is graphene?

Graphene is a single layer of carbon atoms arranged like honeycomb.

It was discovered in 2004, when Russian-born Manchester scientists Andrei Geim and Kostya Novoselov were "playing about" with sticky tape and graphite - the material used as "lead" in pencils.

Placing the tape on the graphite and peeling it, they managed to rip off thin flakes of carbon. In the beginning they got flakes consisting of many layers of graphene. But as they repeated the process many times, the flakes got thinner.

By separating the graphite fragments repeatedly, they managed to create flakes that were just one atom thick. Their experiment had led to graphene being isolated for the very first time.

At the time, many believed it was impossible for such thin crystalline materials to be stable. But examined under a microscope, the material remained stable, and when tested was found to have incredible properties.

It is many times times stronger than steel, yet incredibly lightweight and flexible. It is electrically and thermally conductive but also transparent. The world's first 2D material, it is one million times thinner than the diameter of a single human hair.

But the 'sticky tape' method would not work on an industrial scale. Since then, scientists have been working on manufacturing graphene, to make use of its incredible properties.

In 2010, Geim and Novoselov were awarded the Nobel Prize for Physics. Their discovery meant physicists could study a new class of two-dimensional materials with unique properties.